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1.0 Introduction  
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Motivation 
 
There has been a considerable amount of work done on understanding, modeling and computing 
the observed self focusing and ionization of ultra short laser pulses (USP) when they propagate 
in air and other materials. There is a need for study of the potential applications of these effects. 
One application that has been suggested is the use of a USP ionization channel to guide and 
extend the length of high voltage electrical arcs. Although there are questions about the feasible 
utility of this idea (Ref 1), we need to develop new physics models and analysis techniques for 
assessing this utilization. 

 
Background Discussion 
 
Modeling of USP laser pulse propagation with self focusing and ionization has been done 
previously Braun (Ref 2), Mlejnick (Ref 3), and Sprangle (Ref 4). A study was done at 
AFRL/DE in order to understand the reported associated EMP radiation. Analytical estimates 
were discussed and a numerical atmospheric propagation code was developed, based on standard 
pulse envelope techniques outlined in (Ref 4). The modeling effort also included development of 
a full Maxwell’s Equation model for propagation and material interaction. This modeling and 
computational simulation development has been published in (Ref 1).  
 
The possibility of electrical energy discharge guided by an USP produced ionization channel in 
air has been raised. As an example the positive terminal of a high voltage source may be 
connected to a conductor in close proximity to the filament produced in air by an ultra short laser 
and the return electrode may consist of the target, and the material that the target is standing on.  
Although the use of Ultra-Violet (UV) lasers to trigger electrical breakdown is well-known, ultra 
short laser produced filaments would appear to offer an advantage in precise control of the 
location and direction of the electrical breakdown.  Experiments performed to date have shown 
some promise but a satisfactory modeling capability is necessary to guide experiments and to 
assess the viability of potential practical uses.  
 
The scope of this project included the formulation of an overall simulation methodology and the 
development, testing and integration of the requisite sub models. It did did not include porting to, 
and parallel operation on, a High Performance Computer (HPC) platform. This will be required 
to determine the ultimate  length of  streamer propagation and the energy delivery to an anode 
for cases of practical application. 
 
Problem Overview  
 
In the current effort an electrical discharge model was developed to describe the USP induced 
breakdown of a spark gap at ambient conditions.  The problem geometry is shown in Figure 1.  
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The USP induced ionization is schematically represented by the arrows between the two disk 
electrodes.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The problem of predicting the time behavior of an electrical discharge has been widely studied 
by many investigators and is still not fully understood.  Examples of electrical discharges range 
from the local corona discharge induced on high voltage transmission lines, to the long spark 
spanning a gap with dimensions of centimeters to tens of meters, to the phenomena of natural 
lightning.  The problem is recognized to be difficult due to the large range of dimensions and 
time scales involved, as well as an incomplete understanding of all the relevant physics. 
 
The physics of electrical breakdown in a one-dimensional planar geometry was studied by Kline 
[Ref. 5] using Monte-Carlo techniques.  The velocities of anode and cathode directed streamers 
in nitrogen at relatively low pressures were compared to experiment.  Of particular interest was 
the use of the empirical results of Penny [Ref. 6] to determine the photo ionization rates in 
nitrogen.  Monte Carlo methods have also been demonstrated by Kunhardt [Ref. 7] and others.  
The Monte Carlo approach has the obvious advantage of being able to represent the six 
dimensional distribution function of the electrons and ions.  However the method is 
computationally intense as the random velocity of the electron distribution has to be properly 
advanced over a spatial grid with relatively small length scales.  As a result much effort has been 
put into developing models that effectively integrate over the distribution function and advance 
the electron and ion drift velocities.  These approaches either use the electron and ion mobilities 
by Yoshida [Ref. 8], Wu [Ref. 9], Wang [Ref. 10], Vitello [Ref. 11], Kulikovsky [Ref. 12], or 
solve the electron swarm equations by Guo [Ref. 13]. 
 
In the calculations described here the ionization path produced by the self focusing  
propagation of ultra short laser pulses was included as a fixed (time independent pre-ionization). 
Time dependant laser ionization during the formation of the discharge channel can easily be 
added. The levels of the USP laser ionization used were taken from previous studies of self 
focusing propagation by Zimmerman, et al [Ref. 1]. 

Figure 1.  Schematic view of the electrical breakdown problem. 
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The use of electron and ion mobilities to relate the electron and ion velocities directly to the local 
electric field strength is commonly referred to as the equilibrium approach as it assumes the 
electron and ion have come into equilibrium between the effective collision frequencies and the 
acceleration of the electric field. The use of a full set of fluid equations to model the electrons 
and ions is referred to as the non-equilibrium approach and is more demanding on computer 
resources and may be more susceptible to instabilities when the electron plasma frequency 
approaches the inverse of the time step.  Although neither approach has the fidelity of a full 
Monte Carlo simulation of the electron and ion distribution functions both the equilibrium and 
non-equilibrium approaches are felt to be adequate for electrical breakdown problems due to the 
simple fact that the electrons and ions travel “one way” between the cathode and anode (or visa-
versa). 
 
The majority of papers referenced above consider breakdown in nitrogen and do not consider late 
time heating and arcing effects.  Arcing by itself has been studied by Plooster [Ref. 14] and  
Ganesh [Ref. 15] but the models used are typically one dimensional radial models and consider 
thermal and hydrodynamic effects at relatively late times as compared to the streamer breakdown 
problem.  There has been more recent interest in modeling electrical breakdown in air and 
incorporating a more complete description of the complex air chemistry; see Kossyi [Ref.16], 
Naidis [Ref. 17], Aleksandrov [ref. 18]. Many of the simulations are 1½ D where the streamer 
radius is fixed. The behavior of a long leader in air has been studied using 1D radial models 
Aleksandrov, [Ref. 19] and [Ref. 207] and a 1½ D model, Aleksandrov [Ref. 21].  The 1½ D or 
quasi 2D simulations are often preferred as the spatial grid requirements and the need to solve 
the stiff system of complex air chemistry makes the problem computationally challenging.   A 
contemporary review of the subjects of spark discharge and air chemistry can be found in 
Bazelyan and Raizer [Ref. 22] and Capitelli [Ref.23].      
 
In this report we will be interested in the problem of the initiation of an electrical discharge by 
means of a laser induced ionized path between two oppositely charged electrodes in air at 
atmospheric pressure.  In addition we are interested in both the early time streamer dynamics as 
well as the development of a hot electrically conductive leader channel that allows the electrical 
breakdown to travel over large distances. The problem, as illustrated in Figure 1, consists of a 
spark gap constructed of two cylindrical electrodes separated by a distance d .  The spark gap is 
driven by a voltage source sV  with a series impedance sR  resulting in voltages ,u lV V on the upper 
and lower plates.  A laser is used to create a channel of ionization along the axis.  The problem is 
to predict the time history of the electrical discharge including the discharge current gI  and the 
voltage drop g u lV V V= −  across the electrodes.   
 
Modeling Approach  
 
The modeling approach described here divides the electrical breakdown problem into a 
sequential set of calculations based on the time scale and the physical mechanisms of the 
problem.  Specifically we will divide the problem into an early time and a late time regime.  
 

Early Time Phase: The initial electrical breakdown problem consists of the electron avalanche 
resulting in space charge waves.  Depending on the details of the electrodes and the use of a laser 
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for pre-ionization it is necessary to consider electron transport, ion transport and diffusion.  In 
this report the early time electron motion will be modeled with a fluid approach.  It will be 
necessary to consider various source terms including avalanche, electron attachment and 
electron-ion recombination. During the early time phase of the electrical discharge the electron 
temperature will not be in equilibrium with the ion and neutral temperatures. 
 

Late Time Phase: During the later part of the breakdown process the neutral gas is expected to 
become hot enough so that thermal agitation accounts for most of the free charge.  In this case 
we will assume thermal equilibrium between the electrons, ions and neutral gas molecules and 
atoms and use an electrical conductivity to model the final breakdown process.   
A two dimensional numerical model in cylindrical coordinates will be developed to model the 
electrical discharge problem.  In addition a one-dimensional model will be developed.  The one-
dimensional model is relatively easy to understand and so is useful for developing and testing 
numerical methods and physical assumptions. 

 
Simulating a Laser Induced Electrical Discharge 
 
The problem of interest is determining whether a laser trigger electrical discharge can propagate 
over a distance of several meters.  As will be shown, the early time breakdown problem will 
require ~5-10 micron resolution over the dimensions of the head of the discharge.  This 
dimension is on the order of centimeters.  As a result it is not possible, nor necessary to actually 
simulate the entire discharge process.  Instead the approach taken in simulating the nuclear 
induced lightning problem by Gardner [Ref.24] will be followed.  To recall the nuclear lightning 
discharge involves the propagation of a streamer in the electrically conductive atmosphere 
induced by the prompted and delayed gamma radiation from a nuclear detonation.  The approach 
used was to calculate the local discharge physics in a region of about 10 cm at the tip of a 
conductive streamer.  If the numerical model showed that the discharge would propagate, rather 
than die out, then the simulation was successful.  If necessary the simulation may be repeated for 
various streamer lengths. 
 
Model Geometries 
 
A two dimensional simulation model was developed to model the propagation of a laser guided 
arc over short, centimeter scale, ranges. A secondary one dimensional model was also used to 
facilitate development and implementation of various physics sub models required for the 
complete simulation. The range limitation results from run time feasibility on single PC 
workstation computer. This range can be extended to the 10’s of cm region by porting the model 
to a HPC. This procedure has been investigated and outlined but could not be done within the 
resource limitations of this effort. A further method was researched that will allow the 
simulation to be used over many meter ranges by utilizing a stepped set of local ~10 cm 
snapshot calculations at different ranges; these can be used to approximate propagation over the 
full streamer length. The simulation is based on a cylindrically symmetric computational volume 
that contains metallic objects (boundary conditions). The simulation is used to predict the 
breakdown of the spark gap electrode geometry shown in Figure 2.  The spatial grid for the 
ionization is limited to points near the center ionized column while the electrostatic grid covers 
the entire problem space.   



 

 5 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Computational Overview 
 
The ionized air is represented as a 5 species model  
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The variables , , , ,o e mn n n n n+ −  refer to the neutral air, electron, positive ion, negative ion, and 
excited neutral molecule densities.  The source terms include the Ultra-Violet (UV) ionization of 
the air and the cathode via the inelastic neutral molecule densities.  These five equations are 
simultaneously solved in each finite difference cell using implicit integration techniques.  The 
electric field is determined using a two dimensional FFT technique [Ref. 22, 23] and the 
electron/ion velocities are advanced using mobilities.  The entire system of equations is then 
iterated with the circuit equations to achieve a self consistent solution with the voltage source 
and load impedance.   
 

Figure 2.  Simulation geometry used for numerical simulation of the electrical 
breakdown and ionization guided arc. 
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Arc formation requires the heating of the air. The macroscopic conductivity of the heated air can 
be use to replace the detailed microscopic treatment of charge flow at later times in the 
simulation.   The change in specific energy of neutral air is 
 

                                       
( ) 4

2 4 bb
ep

P

d TE J E
dt
ρε σσ≅ ⋅ + −

l
. (2) 

 
The temperature and electrical conductivity were then determined from Plooster’s equation of 
state and electron mobility model [Ref. 15], [Ref. 27] given by 
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1, 5 3
2 o o oT A A A RT A I A I A Iε ρ ⎛ ⎞= + + + + + +⎜ ⎟

⎝ ⎠
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where ε  is the specific internal energy, 0A represents the fraction of the air molecules that are 
dissociated and 1 2,A A  represent the fraction of air atoms that have been signally or doubly 
ionized.  These coefficients are functions of temperature T and density ρ .  The electron density 
due to thermal ionization is given by 
 

                                         ( )1 22ep r on N A Aρ= +  . (4) 
 
From the change in internal specific energy, it is possible to numerically solve the equation of 
state for temperature.  The electron mobility is given by 
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The use of Plooster’s equation of state eliminates the requirement to solve a potentially very 
large (~100) system of air chemistry equations. 
 
Poisson Computation Timing 
 
The electric field solution time is dominated by the solution of Poisson’s equation that finds a 
quasi-static field solution due to a distribution of charged particles.  The fast Poisson solver that 
we have developed fits the grid with splines in one (radial) dimension and transforms the other 
free dimension (z) via a sine transform to rapidly solve the differential equation in the 
“frequency domain” followed by an inverse transform back to the original spatial domain.  The 
dominate sub-computation in the solution of the electric field is the forward and inverse sine 
transforms.    The procedure for parallelizing FFTs is well-documented [Ref. 28].  
 
 
Figure 3 shows computational timing results comparing the FFT-based fast Poisson solver, 
developed for this simulation, to a Successive Over-Relaxation (SOR) method.  For this test 
case, the potential is solved for a conducting sphere at the origin of a square computational grid.  
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The red curve shows the computation time for the fast solver; the blue the computation time for 
the SOR method; each as a function of grid size.  The pink and green lines are present merely to 
guide the eye: they approximately match the curves at the first point and show the expected times 
for algorithms that scale as the square of the linear dimension.  That is, they show an ideal 
scaling for a problem that grows in proportion to the number of cells.  The fast FFT method does 
a reasonable job at following the curve up until the last point (8196 points) where, most likely, 
the size of the arrays exceed the cache of the processor and an additional time is required due to 
swap memory in and out of the CPU.  If the supposition is true, the problem should be negated 
by our proposed parallel approach.  The time of the SOR computation grows so quickly that it 
did not make sense to compute a solution for a grid larger than 1024 by 1024. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Timing Comparison of FFT and SOR Based Methods. 

 
 
Considerations for Utilizing  Parallel Processing 
  
Though beyond the resources of the current effort the mechanics of performing the conversion to 
parallel processing have been studied and outlined. This extension can be accomplished using the 
standard Message Passing Interface (MPI.)  In particular, the Local Area Multicomputer-
Message Passing Interface (LAM/MPI) can use the MPI implementation [Ref. 29].  MPI 
provides Fortran and C routines that allow easy and safe communication between processors.  To 
model electrical breakdown for geometries where the electrons are separated by a meter or more 
it will be necessary to break the problem up into a series of smaller snapshots.  Each snapshot 
will model the streamer head over dimensions of approximately 10 cm at various locations 
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between the cathode and the anode.  If the discharge is seen to propagate for each shapshot then 
clearly the discharge will propagate from the cathode to the anode.  A similar approach has been 
used for the Nuclear Lightning problem [Ref.21].  This process is illustrated in Figure 4.  The left 
hand part of the Figure shows the relationship between the larger finite difference spatial grid, 
where the figure shows the relationship between the larger finite difference spatial grid, where 
the electrostatic solution is solved, and one particular location of the sub-grid where the rate 
equations are advanced.  The USP induced ionization channel is located along the axis between 
the cathode and the anode and the discharge moves from bottom to top in Figure 4.  below. 
The sub-grid, the electrical discharge is known to be a hot leader below.  As such it must have a 
relatively high electrical conductivity and its potential is, therefore, set to the same potential as 
the cathode.  The right hand part of the Figure shows the propagation of the electrical discharge 
within the sub-grid.  The decision as to whether the discharge is propagating through the sub-gird 
is straightforward.  If the shape and velocity of the tip of the discharge is the same at two times 
along the path, say Tstart and Tstop, then the discharge is propagating and not dissipating.  In 
that case, the projected discharge path over the entire extent of the sub-grid is set to the electrical 
conductivity of the hot leader and the location of the rate equation sub-grid is moved up by 
approximately 10 cm along the discharge path as the leader propagates.  This process may be 
repeated over the entire cathode anode separation path so that the sub-grid is co-located with the 
tip of the leader. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Scheme for implementing a snapshot calculation for extended ranges. 
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2.0 Theoretical Formulation  
 
The fluid approach for electrons can be carried out by equilibrium or a non-equilibrium model.  
In both cases the quantities of interest are the number densities and the drift velocities.  In the 
equilibrium model it is assumed that the acceleration due to the local electric field is balanced by 
the collision rate and so the drift velocity is a function of the local electric field.  However it is 
not assumed that the electrons and ions/neutrals have the same temperature and during the initial 
breakdown-streamer phase we expect that the electron temperature is significantly higher than 
the ion/neutral temperature i.e. ,e i oT T T>> .  In the non-equilibrium model the drift velocity is 
determined by solving the fluid equation for momentum.  In the equilibrium model we need the 
continuity equation for the electrons and ion species, electric field mobilities to relate the 
electron and ion velocities to the local electric field, and electric field dependent rate coefficients 
for the various processes that add and subtract to the various number densities.  In the non-
equilibrium model we need continuity equations for number density, momentum, and energy 
density, as well as an equation of state.  In this case the rate coefficients are typically written in 
terms of energy. 
 
Although the non-equilibrium approach offers a more detailed description of the breakdown 
dynamics the solution of the fluid equations adds considerable complexity to the problem.  
Therefore the equilibrium approach will be initially followed.  The fluid equations needed for the 
non-equilibrium approach are separately documented. 
  

Equilibrium Model 
 
The equilibrium model for the electron and ion species is given by a set of continuity equations 
i.e.  
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plus a set of mobility equations 
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In the continuity equations on is the number density of neutral molecules in the ground state, en is 
the number density of electrons, n+ is the number density of singly charged ions, n− is the 
number of negatively charged ions, and mn is the number density of neutral molecules in an 
average excited state. In general the source and sink terms can have an arbitrarily large number 
of cross coupling terms.  Note that we are dropping the divergence term for the neutral molecules 
and the diffusion term for all the ion species.   
 
 
The various processes contained in the source and sink terms include electron avalanche, 
electron attachment, electron-ion and ion-ion recombination, inelastic excitation and decay of 
neutral molecules, and photo-ionization of neutral molecules.  As a result we can rewrite the 
continuity equations 
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These equations can be written in the general form 
 

 ( )( ) ( , ) .....i
i k i j k i i i

k j k

dn a j n b j k n n n S
dt

υ= + + −∇⋅ +∑ ∑∑  . (9) 

 
We can define an early and a late time regime for the calculations.  The early time regime 
models the propagation of the avalanche and streamer.  At late times when the electron 
avalanche has crossed the gap between the two electrodes the problem should settle to a steady 
state where the gradients of the electron and ion densities become relatively constant in time.  At 
this point the divergence term in the above equation becomes relatively unimportant and can be 
dropped.  The resulting system of ordinary differential equations can now be advanced with a 
much larger time step.  This later regime will be called the late time regime and is characterized 
by the transition to an arc. 
 
We now need to specify the various terms in these equations.  We will begin with the mobility 
terms. 
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Electron and Ion Mobility 
 
The drift velocity of electrons at equilibrium is found from 
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resulting in 
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We will assume that the ionization level is low enough so that only collisions with neutral 
molecules need to be considered and so 
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From Kline [Ref. 1] we find 
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From Vitello [Ref. 7] we find 
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The assumption that the drift velocity is proportional to electric field strength breaks down for 
both high electric field strengths and high ionization densities. Longmire [Ref. 30] gives 
 

 

3

2 4 3 5

5

0.79 , / 3 10 /

( / ) 0.25 3 10 / , 3 10 / 3 10 /

0.079 , / 3 10 /

r

e r r r

r

E V m

m V s E E V m

E V m

ρ

μ ρ ρ ρ

ρ

⎧ ⎫< ×
⎪ ⎪⎪ ⎪− ≅ × × < < ×⎨ ⎬
⎪ ⎪> ×⎪ ⎪⎩ ⎭

 (15) 

 
where the relative air density defined at low pressure is /r o on Nρ = .  We will further assume 
that rρ is fixed by the initial conditions, consistent with the weak ionization assumption used 
here.  Vitello’s result for the electron drift velocity in nitrogen should also be modified for high 
field levels.  A possible modification is (MKS units) 
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2 7

2

2 7 7

3.8 10 , / 1.14 10 /
( / )

3.8 10 1.14 10 / ( / ) , / 1.14 10 /
r

e r

r r

E V m
m V s

E V m E V m

ρ
μ ρ

ρ ρ

−

−

⎧ ⎫× < ×⎪ ⎪− ≅ ⎨ ⎬
× × ≥ ×⎪ ⎪⎩ ⎭

. (16) 

 
We will use the last two results for the electron mobility in air and nitrogen respectively.  For the 
ion mobility we will use values for air and nitrogen from Longmire [Ref. 28] and Vitello i.e. 
 

 
2 4

2 4

( / ) 2.4 10

( / ) 3.4 10
p r

p r

cm V s Air

cm V s Nitrogen

μ ρ

μ ρ

−

−

− ≅ × −

− ≅ × −
 . (17) 

 

Electron Diffusion 
 
From Vitello we get in MKS units 
 
 2( / ) 0.2e rD m sρ ≅ . (18) 
 

Electron Collision Ionization 
 
The electron impact ionization or first Townsend coefficient is also given by Vitello 
 
  

 

1

7
5

26000 ( )( ) 570 ( )exp
( / )

1.98 104.33 10 exp
( / ) /r

r

P Torrm P Torr
E V m

E V m

α

ρ
ρ

− ⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
⎛ ⎞− ×

= × ⎜ ⎟
⎝ ⎠

 (19) 

 
We can now form the electron avalanche or cascade rate as the product of the first Townsend 
coefficient and the electron drift velocity.  We have 
 

 
( ) ( ) ( )1 1

7
5

sec / sec

1.98 104.33 10 exp .
( / ) /

e

r e
r

C m m

E
E V m

α υ

ρ μ
ρ

− −=

⎛ ⎞− ×
= × ⎜ ⎟

⎝ ⎠

 (20) 

 
Inelastic Excitation and Decay 
 
The macroscopic cross section 1( )cmδ − for inelastic excitation of neutral molecules is given as a 
ratio /δ α by Yoshida [Ref.4] as 
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[ ]

( ) ( ) ( ) ( ) ( )

1

2 4 6 7

2 3 4 5

1 ( / )

268 353.4 10 547.3 10 160.5 10 212.4 100.101
/ / / / /

o
o

o

P P

E P E P E P E P E P

δδ
α α
δ
α

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

× × × ×
= + − + − +

 (21) 

   
where 60oP Torr≅ is the quenching pressure of the inelastic transition of interest.  The decay 
time of the transition is also given by Yoshida  

 
1 /

o
m

oP P
ττ =

+
 (22) 

 
where 36o nsτ ≅ is the low pressure value.  To be consistent we will use from Yoshida  
 

 ( )1 2727.56 ( )exp
/

cm P Torr
E P

α − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (23) 

 
In the above equations /E P  has units of volts/cm-Torr.  We can now define the rate coefficient 
for creation of excited neutral molecules by 
 
 ( ) ( ) ( )1 1sec / seceB m mδ υ− −= . (24) 
 
The rate coefficient for decay of the excited molecules is given by 
 

 ( )1 1sec .
m

E
τ

− =  (25) 

 

Electron Attachment 
 
For the electron attachment rate in air we will use the simple three body rate from Longmire 
[Ref. 31] 
 
 ( )1 8 2sec 10 rA ρ− ≅ . (26) 
 
The difference between attachment and avalanche ( )C A−  will determine the electron 
avalanche/breakdown threshold in air. 
 
Electron-Ion Recombination 
 
he electron-ion reaction is assumed to go by radiative recombination and can be approximated 
from Longmire as 
 
 132 10eiR −= × . (27) 
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Ion-Ion Recombination 
 
The ion-ion recombination reaction is assumed to be a three body mechanism and can be 
approximated from Longmire as 
 ( )3 12/ 2 10ii rR m s ρ−= × . (28) 

UV Photo-Ionization 
 
In order to complete the model we need to consider photo-ionization of the ambient gas and 
electron photoemission from the cathode.   
 
Given the source 3( / sec)pS photons cm − the ionization rate at a location 0R = is given by 
 

 
( )

24

aR
p a

e
all
space

S R e dV
S

R

μη μ
π

′−′
=

′∫∫∫  (29) 

 
 
or as given by Penny [Ref. 6]  
  

 
( ) ( )

24
D

e
all
space

n R R P PdV
S

R
ψ
π

′ ′
=

′∫∫∫
&

. (30) 

 
Penny has semi log plots of ( )RPψ  vs x RP=  for nitrogen and air.  In order to use these results 
here the coefficient ( )xψ was fit by a sum of exponentials of the form 
 
 1 2

1 2( ) ...b x b xx a e a eψ − −= + +  (31) 
 
where x is the range in units of cm-Torr.  A simple fitting procedure was used where the plot 
was divided up into sections and each section was fit by a single exponential using the relations 
 

 
( ) ( )

1

1 2
1

2 1

1 2

ln ln

/ .b x

b
x x

a e

ψ ψ

ψ −

−
=

−

=

 (32) 

 
For air we have a three term fit where  
 

 

4 1
1 1

6 2
2 2

7 3
3 3

5.0 10 2.705 10

6.0 10 1.455 10

6.0 10 6.383 10 .

a b

a b

a b

− −

− −

− −

= × = ×

= × = ×

= × = ×

 (33) 
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For nitrogen we have a three term fit where 
 

 

3 1
1 1

7 2
2 2

8 3
3 3

1.0 10 3.838 10

3.0 10 2.906 10

2.0 10 2.302 10 .

a b

a b

a b

− −

− −

− −

= × = ×

= × = ×

= × = ×

 (34) 

  
A list is given in Table 1 which gives the values for the empirical coefficient ( )RPψ  with units 
of electron-ion pairs created per ionizing collision-str-cm-Torr as a function of the range-
pressure product.  Also shown is the effective photon absorption coefficient 1 1( )cm Torrμ − −  for 
air and nitrogen.  
 
                                                     Table 1.  
                            Ionization and Absorption Coefficients 
 
  ( )RP cm Torr−  ( )airψ     ( )nitrogenψ  ( )airμ     ( )nitrogenμ  
   
    1.000E+01   3.919E-05   2.178E-05   6.331E-02   2.239E-01 
    4.105E+01   3.771E-06   1.093E-07   2.463E-02   3.331E-02 
    7.211E+01   2.480E-06   5.385E-08   1.903E-02   1.558E-02 
    1.032E+02   1.648E-06   3.074E-08   1.623E-02   9.611E-03 
    1.342E+02   1.106E-06   2.076E-08   1.446E-02   6.739E-03 
    1.653E+02   7.508E-07   1.613E-08   1.319E-02   5.089E-03 
    1.963E+02   5.162E-07   1.373E-08   1.224E-02   4.034E-03 
    2.274E+02   3.600E-07   1.226E-08   1.147E-02   3.309E-03 
    2.584E+02   2.550E-07   1.120E-08   1.085E-02   2.784E-03 
    2.895E+02   1.835E-07   1.034E-08   1.032E-02   2.389E-03 
    3.205E+02   1.341E-07   9.590E-09   9.872E-03   2.082E-03 
    3.516E+02   9.963E-08   8.914E-09   9.481E-03   1.838E-03 
    3.826E+02   7.510E-08   8.293E-09   9.136E-03   1.640E-03 
    4.137E+02   5.738E-08   7.719E-09   8.829E-03   1.476E-03 
    4.447E+02   4.439E-08   7.185E-09   8.554E-03   1.339E-03 
    4.758E+02   3.470E-08   6.689E-09   8.305E-03   1.222E-03 
    5.068E+02   2.737E-08   6.228E-09   8.079E-03   1.122E-03 
    5.379E+02   2.176E-08   5.798E-09   7.872E-03   1.036E-03 
    5.689E+02   1.741E-08   5.398E-09   7.681E-03   9.602E-04 
    6.000E+02   1.400E-08   5.026E-09   7.504E-03   8.938E-04 
 
 
 
 
UV Photo-Emission 
 
In order to determine the electrical discharge UV induced photoemission at the cathode we need 
the incident directed photon flux at the cathode surface.  This flux is given by 
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( ) ( )

2

ˆˆ

4

a R
n p

p
half
space

e S R e dV
Q

R

μ

π

′−

+
′⋅Ω

=
′∫∫∫  (35) 

 
where ˆne is the unit normal to the cathode surface and Ω̂ is the element of solid angle. Again it is 

interesting to consider the case where ( )pS R′  is uniform over the half space.   Rewriting in 
spherical coordinates we have  
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∫
 (36) 

 
The resulting one-sided electron flux is given by 
 
 ( ) ( ) ( )2 2/ sec / / sec .p pe cm Y e p Q p cm+ +Γ − = −  (37) 
 
Explicitly putting in the pressure term results in, [Ref. 4] [Yoshida, (1), (2) 71], 
 

 
( ) ( ) ( )/

2

ˆˆ
.

4

a P R P
p n p

e
half
space

Y e S R e dV

R

μ

π

′−

+
′⋅Ω

Γ =
′∫∫∫  (38) 

 
The advantage of this formulation is that the pressure normalized absorption coefficient 

/a Pμ can be derived from experiment.  However we will still need to find a the photon source 

term ( )pS R′  and the cathode electron yield coefficient ( )/pY e p . 
 
 Penny [Ref.2] has provided log-log plots of ( ) /ax Pμ μ=  for nitrogen and air.  In order to use 
their results here the coefficient ( )xψ was fit by a power sum  
 
 1 2

1 2( ) ...b bx a x a xμ − −= + +  (39) 
 
where μ has units of cm-1 torr-1 and x is the range in units of cm-Torr.  A simple fitting 
procedure was used where the plot was divided up into sections and each section was fit by a 
single exponential using the relations 
 

 
( ) ( )
( ) ( )

1

1 2
1

2 1

1 2 2

ln ln
ln ln

( ) / .b

b
x x

a x x

μ μ

μ −

−
=

−

=

 (40) 
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For air we have a two term fit where 
 

 1 1

2 2

10.0 2.736
0.123 0.4372.

a b
a b
= =
= =

 (41) 

 
For nitrogen we have a one term fit where 
 
 1 15.0 1.349.a b= =  (42) 
 
A list of values is also given in Table 1. 
 
As discussed previously the photon source is given by 
 

 .m
p

m

nS
τ

=  (43) 

 
From Yoshida [Ref. 4] we find that the cathode electron yield is related to the first Townsend 
coefficient 1( )cmα − ,  the inelastic excitation coefficient 1( )cmδ −  (macroscopic cross section for 
electron collision induced inelastic excitations of neutral molecule states that then decay by 
photoemission), and the second Townsend coefficient γ  by the relationship 
 
 .pYδ αγ=  (44) 
 
The second Townsend coefficient γ is a function of the cathode material, the ambient gas, and 
the electric field to pressure ratio /E P  and is defined as the number of secondary electrons 
produced at the cathode per ion pair produced in the gas.  Values typically vary between 110− and 

310− .  The first and second Townsend coefficients are combined to give the simple electrical 
breakdown criteria for small gaps i.e. 
 
 1.deαγ =  (45) 
 
For electrical discharges in nitrogen at P=300 Torr Yoshida also suggests a value 3~ 8.2 10γ −× .  
The ratio /δ α was discussed previously.  Values for / Pα , α , /δ α , and δ are given in Table 
2.  For reference 5 /MV m at 760 Torr corresponds to 66 V/cm-Torr.  Choosing 

/ 50 /E P V cm Torr= −  results in / 1.19δ α ≅ and 
 

 ( ) ( )3 21/ 8.2 10 ~ 1 10 .
1.19pY e p α γ

δ
− −⎛ ⎞ ⎛ ⎞= = × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (46) 

   
This result is somewhat higher than values of 3 410 10− −− anticipated from some unpublished data 
taken by one of the authors on unprepared samples of copper. 
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Table 2 gives values for 1 1/ ( )P cm Torrα − − , 1( )cmα − , /δ α  and 1( )cmδ −  [Yoshida, (1), (2), 76] 
as a function of / ( / )E P V cm Torr−  at a pressure of 760 Torr.  The decay time for the level is 

2.63nsτ ≅ . 
 
 
 
 

Table 2 
Electrical Coefficients for Air 

( / )E V cm T
P

− 1 1( )cm Torr
P
α − −  1( )cmα −     /δ α         1( )cmδ −  

 
1.000E+01    1.163E-11    8.841E-09   7.563E+02   6.687E-06 
2.000E+01    9.378E-06    7.127E-03   1.975E+01   1.408E-01 
3.000E+01    8.728E-04    6.633E-01    4.517E+00   2.996E+00 
 4.000E+01    8.420E-03    6.399E+00   2.069E+00  1.324E+01 
 5.000E+01    3.281E-02    2.493E+01   1.187E+00   2.960E+01 
6.000E+01    8.123E-02    6.174E+01   7.636E-01   4.714E+01 
7.000E+01    1.552E-01    1.180E+02   5.307E-01   6.261E+01 
8.000E+01    2.523E-01    1.917E+02   3.913E-01   7.504E+01 
9.000E+01    3.681E-01    2.798E+02   3.027E-01   8.468E+01 
1.000E+02    4.980E-01    3.785E+02   2.435E-01   9.215E+01 

 
 
Air Heating Model 
 
The early time equilibrium streamer dynamics assume that the electron temperature is directly 
related to the local electric field and air density.  In fact, the molecular gas will heat up from 
electron-neutral collisions.  If we consider the contributions due to Joule heating from electron 
and ion currents 
 
                                              ( )e eJ e n n e nυ υ υ− − + += + +∑ ∑  (47) 
 
and an additional term from the intrinsic thermally induced electrical conductivity peσ of the 
neutral gas we can calculate the change of internal energy from 
 

 ( ) 4
2 4 bb

ep
P

d TE J E
dt
ρε σσ≅ ⋅ + −

l
 (48) 

 
where ε is the specific internal energy.  The last term in the above equation represents the 
radiative loss of energy from an optically thin gas where 8 2 45.67 10 / degbb W m Kσ −≅ × − .  The 
Plank mean free path Pl was not available so the Rosseland mean free path ~ 10R ml  at a 
temperature of 10,000 degrees K was used Brode [Ref. 32]. For the present time we will ignore 
hydrodynamic effects and assume that the gas density is constant so ρ 0 = 1.17688 kg/m3  
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4

2 41 .bb
pe

o R

Td E J E
dt

σε σ
ρ

⎛ ⎞
≅ ⋅ + −⎜ ⎟

⎝ ⎠l
 (49) 

 
A relatively simple model for the electrical conductivity of heated air has been proposed by 
Plooster [Ref. 27] that consists of a caloric equation of state that can be inverted to get the 
temperature as a function of specific energy density and an electrical conductivity model.  
Plooster’s equation of state is written  
 

 ( ) ( ) ( )1 2 1 1 2 2
1, 5 3
2 o o oT A A A RT A I A I A Iε ρ ⎛ ⎞= + + + + + +⎜ ⎟

⎝ ⎠
 (50) 

 
where ε  is the specific internal energy, oA represents the fraction of the air molecules that are 
dissociated, and 1 2,A A  represents the fraction of air atoms that have been signally or doubly 
ionized.  These coefficients are functions of temperatureT , and density ρ .  The electron density 
due to thermal ionization is given by 
 
 ( )1 22 .ep r on N A Aρ= +  (51) 
 
 
Given the change in internal specific energy it is possible to numerically solve the equation of 
state for temperature.  Then the electron-neutral and electron-ion mobilities are given by  
 

 ( )
( ) ( ) ( )

2
2

11

2.64 2.45 10/
11

en
r eVr

m V s
A TA T K

μ
ρρ

−×
− ≅ ≅

−−
 (52) 

and 
 
 

                  ( ) ( )
( )

( ) ( )

3/ 29 3 3/ 2
2

4

1 11/3 1/3
1 1

1.89 10 2.36 10/ .
1.63 10 1.89ln ln

eV
ei

eV
r r

r r

T K Tm V s
T K TA A

A A

μ

ρ ρ
ρ ρ

− −

−

× ×
− ≅ ≅

⎛ ⎞ ⎛ ⎞×
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (53) 

 
The electron-neutral and electron-ion conductivities are given by 
 

                                                         
( )
( )

1

2

,

,

enp ep enp ep

eip ep eip ep

e n F n T

e n F n T

σ μ

σ μ

= =

= =
 (54) 

  
and the resulting conductivity is given by 
 

 .en ei
ep

en ei

σ σσ
σ σ

=
+

 (55) 
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Electrostatic Model 
 
In addition to creating and transporting charge it is necessary to advance the electric fields in a 
self-consistent manner. The approach used here is to advance Poisson’s equation   
 

 
2 2

2
2 2

1

or r r z
φ φ φ ρφ

ε
∂ ∂ ∂

∇ = + + = −
∂ ∂ ∂

 (56) 

 
where the net charge density at the corners of the finite difference cell are determined by 
summing the free electrons, positive ions and negative ions i.e. 
 
 ( ) .ee n n e nρ − += + +∑ ∑  (57) 
 
 
The electric field is then found from E φ= −∇ . Solving Poisson’s equation also requires the 
electron boundary conditions.  For the early time discharge we will define an effective discharge 
current 
 

 
0

2 / .
u u

l l

Z ZR

d z
Z Z

I J rdr dz dzπ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫ ∫ ∫  (58) 

 
The voltage drop across the electrodes is then given by  u l s d sV V V I R− = −  
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 3.0 Numerical Formulation  
 
The coordinate system is shown in Figure 5.  The outer boundaries are defined on the lower, 
upper, and outer surfaces by boundary potentials , ,VL VU VO .   

 
( ,1)
( , )
( , ) .

i VL
i nez VU
ner k VO

φ
φ
φ

=
=
=

 (59) 

 
The object potentials iV  (pot_modmap(i,k)) are also set along with any fixed charge 

( , )fixed i kρ and the volume charge ( , )i kρ is set to zero.  A direct solution technique described by 
Kunhardt [Ref. 25] , and Hockney [Ref. 26] was adapted. We begin by with Poisson’s equation 

 
2 2

2
2 2

1

or r r z
φ φ φ ρφ

ε
∂ ∂ ∂

∇ = + + = −
∂ ∂ ∂

 (60) 

 
and expand the potential and charge density as discrete sine transforms in the z direction  

 
1 max

1 max

( , ) ( )sin

( , ) ( )sin .

n
n

n
n

n zr z r
Z

n zr z r
Z

πφ φ

πρ ρ

∞

=

∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑

∑
 (62) 

Note that this expansion assumes that the potential is zero at the lower and upper outer 
boundaries.  This is not really a limitation as we can place inner surfaces of arbitrary potential to 
build the desired problem.  Using this approach along with the assumption of a uniform mesh in 
the axial or z directions it can be shown that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.  Numerical grid for the two dimensional problem.   
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   (63) 
 

 
2

2 2

( ) ( ) ( )1 2 cos 1 ( )
1

n n n
n

z o

r r rn r
r r r z N

φ φ ρπ φ
ε

⎡ ⎤⎛ ⎞∂ ∂ −
+ + − =⎢ ⎥⎜ ⎟∂ ∂ Δ +⎝ ⎠⎣ ⎦

. (64) 

 
This equation is tridiagonal on the 2D finite difference mesh.  The method of solution is as 
follows.  First the quantities ( )n rρ are determined by fast sine transforms as described by Press et 
al [Ref. 33]. Then we solve the tridiagonal equation shown above for ( )n rφ .  Finally we find the 
potential on the two dimensional mesh by the fast sine transform.  
 
 

 
1 max

( , ) ( )sin .n
n

n zr z r
Z
πφ φ

∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (65) 

 
 
In order to use this direct approach it is necessary to convert the electrical potential of defined 
objects or surfaces within the grid to equivalent electrical charges.  First consider an interior 
potential surface as shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Placement of a potential surface in the finite difference grid. 
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We begin by placing a unit charge ( 1 1/ oq ε= ) at the first object node on the potential surface and 
solve Poisson’s equation using the direct solver to find the potentials at all the nodes on the 
potential surface.  We then set 
 

 

11 1

21 2

1

........................
.n n

a V
a V

a V

=
=

=

 (66) 

 
We then repeat this process for the rest of the nodes and form a system of equations which 
relates the potentials at the object nodes to the charges at the nodes i.e. 
 

 

1 11 12 1 1

2 21 22 2 2

1 2

.

.
.. . . . . .

.

n
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n n n nn n

V a a a q
V a a a q

V a a a q

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (67) 

 
or  
 1 .V C q−=  (68) 
 
As a result by calling the direct solver n times we can form the inverse capacitance matrix 1C − .  
This matrix is normally not excessively large and can be inverted to get the capacitance matrix 
C .  This operation only has to be done at the beginning of the calculation and only if the 
geometry changes.  The spark code checks to see if the capacitance matrix needs to be 
recalculated at the beginning of each run. 
 
Given the capacitance matrix the Poisson calculation proceeds as follows.  First the direct solver 
solves for the potentials given the ionization charge but ignoring the boundaries.  The resulting 
(false) potentials *V  at the object nodes are then used to calculate false charges via 
 
 * *.q CV=  (69) 
 
Then the negative of the false charges is added to the ionization charge and the direct solver 
again solves for the potentials.  At this point all the potentials at the object surface are zero.  If 
the object potentials are not zero we only need to subtract them from *V  and solve 
 
 ( )* .objectq C V V= −  (70) 
 
Once the potentials are determined the initial electric fields are found from 
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[ ]
[ ]

( , ) ( 1, ) ( , ) / ( )

( , ) ( , 1) ( , ) / ( ).

er i k i k i k r i

ez i k i k i k x k

φ φ

φ φ

= − + − Δ

= − + − Δ
 (71) 

  
We also need to initialize the late time Plooster equation of state variables.  The only difference 
is adding an additional dimension to the previous results.  Given the initial neutral gas 
temperature ( , )T i k and density oρ  we have 
 
 ( )( , ) , ( , )ose i k T i kε ρ=  (72) 
 
 ( )1 2( , ) 2 ( ( , )) ( ( , ))ep r on i k N A T i k A T i kρ= +  (73) 
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and 
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( , ) .
( , ) ( , )
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i k i k
σ σ

σ
σ σ

=
+

 (75) 

 
For the thn time step advance from time nt to time 1n nt t t ++ Δ =  we begin with the number 
densities ( , ), ( , ), ( , ), ( , )n n n n

e on i k n i k n i k n i k+ − for the ionization electrons, positive ions, negative ions, 
and neutral molecules.  We also have the electric field ( , ), ( , )n ner i k ez i k .  We will initialize the 
final electric field 1 1( , ), ( , )n ner i k ez i k+ + to ( , ), ( , )n ner i k ez i k and then iterate until the change in 

1 1( , ), ( , )n ner i k ez i k+ + is acceptable.  Therefore we start the iteration by setting 
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 (76) 

 
We now loop over the j index.  The first step is to define time averaged fields 
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 (77) 

 
These fields are not located at the fluid cell center but rather at the edges.  Therefore we take 
spatial averages 
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( )
( )

2 2
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 (78) 

 
 
at the fluid cell centers ( ( ), ( )x i z k ) and calculate the mobilities, rate coefficients, and drift 
velocities as was done for the one dimensional case and drift velocities as was done for the one 
dimensional case.  For air we have 
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                                                            4( , ) 2.4 10 /p ri kμ ρ−= ×  (80) 
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We also need to calculate the mobilities and drift velocities at the fluid cell edges (the ( )xo i and 

( )zo k locations in Figure 2) i.e. we replace 2 2( , ) ( , ) ( , )emag i k er i k ez i k= +% %  with 
2 2( , ) ( , ) ( , )emag i k er i k ez i k= +% %  and recalculate the mobilities given above.  We then define the 

drift velocities 
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 (87) 

 
 
For nitrogen we have (MKS units) 
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 4( , ) 3.4 10 /p ri kμ ρ−= ×  (89) 
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 ( , ) 0A i k =  (91) 
 
  13( , ) 2 10eiR i k −= ×  (92) 
 
 12( , ) 2 10 .ii rR i k ρ−= ×  (93) 
 
As in the one dimensional case we need to determine the UV electron sources and the UV 
induced photoemission at the cathode.  For the UV electron sources we will assume that only 
electron collisions on the axis are important.  As a result we can write 
 

 ( ) ( )
max

int
1

, (1, ) , ,
k

e D
k

S i k A n k S i k k
′=

′ ′= ∑ &  (94) 

 
where ( ),eS i k has units of electrons per unit volume per unit time and 
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 (95) 

 
The A  coefficient is an empirical scale factor to account for the fact that the discharge has a 
radius larger than one cell.  It would be expected that A ~ the number of radial cells in the 
discharge. 
 
For the UV induced photoemission we first determine an electron emission flux at the cathode 
defined by 
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where ( )1,pS k′ has units of photons per unit volume per unit time and 
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 (97) 

 
The first term in the sum represents the ne ⋅Ω

)) cosine term in the integration over the emitting 
surface.  The units of the absorption coefficient are 1 1length pressure− − .  As a result the integral 

( )int ,cY i i′ has units of length.  Given the electron emission flux the electron source at the cathode 
is given by 
 

 ( , )( , ) .
( ) ( 1)

e c c
e c c

c c

i kS i k
zo k zo k

+Γ
=

− −
th (98) 

 
As in the one dimensional case after the air chemistry and UV sources are called the electron and 
ion transport terms are determined using a second order upwind differencing scheme. We define 
the advective fluxes as 
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We also include the diffusion terms 
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The transport terms are now advanced using 
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Given the advective flux the current density is given by 
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cur i k e r i k
cuz i k e z i k

= Γ
= Γ

 (102) 

the change in number densities due to advection and diffusion must be combined with the growth 
or decay terms due to avalanche, attachment, recombination, and so on. Once the number 
densities are advanced the early time electrical conductive is calculated from 
 
 ( )( )1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .n n n

e e pi k e i k n i k i k n i k n i kσ μ μ+ + +
+ −= + +  (103) 

 
This conductivity is not directly used in the calculation but serves as a diagnostic.  Next the 
electrode and wall boundary conditions are set using the modmap (i,k) array. The net charge 
density is determined from 
 
 ( )1 1 1 1( , ) ( , ) ( , ) ( , )n n n n

ei k e n i k n i k n i kρ + + + +
+ −= − +  (104) 

 
and the total net charge is 
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In order to account for the resistance of the power supply it is necessary to calculate an effective 
discharge current between the electrodes, assumed to be located at grid points _id lower and 

_id upper  respectively.  We have 
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Now we will adjust the potential at the electrons using the source resistance sR of the power 
supply i.e. 
 
 ( ) ( ) ( )_ __ _ .id upper id lower s did upper id lower V V R Iφ φ− = − −  (107) 
 
The Poisson equation solver described previously is called to solve 
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and the fields are advanced as 
 
 1 1.n ne φ+ += −∇  (109) 
 
We now check the convergence of the iteration by checking  
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or noting that the number of iterations maxj j≥ .  If the exit criteria are not met we set 
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and repeat.  If the exit criteria are met we proceed and determine the number of electrons and 
positive ions per unit area i.e. 
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This completes the early time advance where propagations effects are important and where the 
electron temperature is not in equilibrium with the neutral molecules.  However, we need to 
advance Plooster’s equations for the neutral gas specific energy, temperature, and conductivity in 
order to know when to switch over to the late time model.  The specific energy is advanced by 
considering the thermal energy density with contributions to both the early time electron flow 
and the heating from the Plooster conductivity.  Specifically we advance 
 (113) 
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In order to determine the temperature we need to invert Plooster’s equation of state.  The method 
for determining temperature goes as follows.  Given the specific internal energy density 1nε + the 
temperature 1nT + can be determined by forming the function 
 
 ( ) ( )1 1 1, 0.n n ng T Tε ρ ε+ + += − =  (114) 
 
Then by Newton-Raphson iteration 
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 (115) 

  
The TΔ term can be set to about 310nT −⋅ . 
 
The Plooster conductivity ( , )ep i kσ is advanced as described previously.  The resistance array 
between the fluid cell, shown in Figure 7, centers is determined as follows.  For the vertical 
resistors on the axis we have ( 1, 1, )i k nhz= =  
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zo k z k z k zo kRZ k
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− + −
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+
 (116) 
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Figure 7.  Representation of the finite difference conductivity/resistivity mesh used to solve for     
the late time discharge.  Note that objects with fixed potentials are represented by current 
sources. 
 
For the inner vertical resistors ( 2,..., , 1, )i nhr k nhz= =  we have 
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For the outer vertical resistors ( , 1, )i ner k nhz= = we have  
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Normally the outer boundary is conductive so these resistors are set to a small value.  For the 
interior radial resistors ( 1,..., , 2,..., )i nhr k nhz= = we have 
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The radial resistors across the bottom and top of the mesh form the conductive boundary 
condition so they are also set to a small value as are the resistances inside any conductive object 
within the finite difference mesh. 
 
At this point we need to calculate the voltages at the cell nodes and the electric fields.  There are 
two approaches to consider.  The first is to approximate the resistance between two objects or 
potential surfaces within the finite difference mesh by assuming axial current flow.  In this case 
we can divide the problem into a set of conductive disks in series.  The admittance of each disk is 
given by 
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and the Plooster resistance between the two electrodes is given by 
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4.0 Test Simulations  
 
In order to test the Poisson solver, a couple of simple problems have been solved.  In both cases, 
the program was applied to a problem with 128 r  grid cells and 256 z  grid cells.  Both the r  
and the z  are uniform, with a cell size of one half unit.  The first test case is for a sphere of 
uniform charge density of magnitude 1/10.  The sphere has a radius of five units.  Figure 8 shows 
the charge density used.  The potential computed from this charge distribution is shown in Figure 
9. 
 
 

 
 
 
This is a particularly nice test case because the solution of the resulting equation is known 
analytically.  In particular, consider solving Poisson’s equation solved for a uniformly charged 
sphere at the origin 
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 (122) 

 

In spherical-polar coordinates, symmetry requires 0,φ φ
θ ϕ
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= =
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and we are left with an equation 

in the radial variable only: 
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 (123) 

 
Multiplying by 2r  and integrating with respect to r once gives 
 

Figure 8: Test Run Charge Density. Figure 9: Test Run Scalar Potential. 
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Dividing by 2r  and integrating with respect to r again gives 
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The first constant of integration may be determined by a regularity condition.  The potential must 
be finite as 0r →  which forces 1c  to be zero.  We also require that the potential must go to zero 
as r  becomes infinite.  This forces 4c  to be zero.   A requirement that the potential and its first 
(radial) derivative are continuous everywhere, but at r a=  in particular, gives two equations that 
may be solved for 2c  and 3.c  
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and 
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result in  
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finally giving the solution 
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The scalar potential given by this analytical solution for a sphere analogous to the one used in 
Figure 9 is shown in Figure 10.  The difference between the analytic solution and the one 
obtained from the fast Poisson solver is shown in Figure 11. 
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There are two primary causes for the difference in the values of the analytic potential and the 
computed one.  The first is that, due to discretization, the charged objects are slightly different.  
This is clearly seen in Figure 11 where the error has large peaks near the boundary of the charged 
sphere.  The second source of error is due to the fact that, for the numerical solution, the scalar 
potential is forced to be zero at a cylinder defined by (polar) radius r R=  and with the top and 
bottom defined by 0z =  and ,z Z=  respectively.  The analytic solution asymptotically 
approaches zero as the (spherical) radius becomes large, but is not zero for any finite value. 

 
To give the algorithm a bit more of a challenge, a second test case was run.  In this case, two 
spheres of equal but opposite charges are displaced from the center of the grid by three units, 
each in a different direction.  This results in two equal, but opposite crescent shaped charge 
objects.  In the area near the origin where the two spheres overlap results in a cancellation of 
charge.  Figure 12 shows the resulting charge density for this run.  Figure 13 shows the resulting 
scalar potential computed from the charge distribution of Figure 12. 

 

Figure 10: Analytic Scalar Potential for a Uniformly 
Charge Sphere.

Figure 11: Difference between Analytic and Fast 
Poisson Solutions.

Figure 12: Charge Distribution for Second Test Case. Figure13: Scalar Potential for Second Test Case. 
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5.0   Conclusions 
 
Numerical models have been developed for the range of physical process on spatial and temporal 
scales required for the analysis of the USP Laser initiated high voltage discharge problem. These 
specifically include: 
 

- Treatment of the reaction rate equtions for determining the evolution of the numerous 
charged particle species in air under high electric field strengths. This treatment is used in 
the early time discharge initiation phase of the process. 

 
- A very fast method for determing the quasi-static values of the electic field through out 

the simulation volume, at each time step of the simulation. This was accomplished by 
development of an FFT/Cubic Spline based Poisson algorithm.  

 
- A simulation of the production and absorption of ionizing uv radiation within the 

computational volume. 
 

- A method for representing various metalic object boundry conditions within the overall 
cylidyrically symmetric simulation volume and still allow for the zero field end 
boundaries required by the FFT base poison algorithm. This method employs the 
placement of a fictitous charge distribution that yields the proper boundry conditions for 
imbedded conducting surfaces. 

 
- A simulation of the motion of electrons within the simulation volume, this was treated 

with a two step fluid description of the moving electrons. 
 

In order to extend the computational range within feasible computer simulation time 
approximations were developed for use in the early and late time phases of the simulation: 
 
- An approximation was developed, for use in late time after charge flow equilibration, to 

treat the electron motion as a current with a conductivity based on an caloric eqution of 
state previously developed by Plooster. 

 
- Definition of a procedure to treat long range (Meter scale) discharges as a series of  

detailed local  ‘snap shot’  calculations at points along the extended streamer path.  
 

 
The above outlined models were integrated and demonstrated on a single CPU PC based 
workstation. Test simulations were done to assure the proper operation of the simulation 
modules. Methods for parrallelizing the overall simulation for porting to a multi-core High 
Performance Computer were studied and outlined.  
 
The modules outlined above were however integrated and a series of small scale test problems 
completed. These calculations showed the apparent proper behavior of the simulation, the 
expected reduction of the air breakdown voltage associated with the discharge, and the formation 
and initial propagation of a discharge channel were observed. Larger scale calculations were not 
feasible on a workstation type computer. Methods for moving to parallel operation on an HPC 
were investigated and outlined. 
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